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1. Introduction

Streaming music services like Deezer must deliver accurate, timely song suggestions to keep users engaged
and satisfied. In this project, I build a music recommendation engine using data from the DSG17 Online
Phase competition on Kaggle, leveraging a large dataset of user-listening histories [1]. The primary goal
is to predict whether a user will listen to a recommended track for more than 30 seconds
(is_listened = 1) or skip it early (is_listened = 0).
A key challenge in this task is the imbalance of the target: although millions of listening events are
recorded, many of them are “skips” (0) versus “listened” (1) or vice versa, depending on the sample. To
robustly evaluate our models on such an imbalanced dataset, I focus on the ROC AUC (Area Under the
Receiver Operating Characteristic Curve) metric. This is also the official competition measure.
Why ROC AUC?

1. Threshold Independence: ROC AUC evaluates how well a model distinguishes positives from nega-
tives across all possible thresholds. This helps us avoid picking an arbitrary cutoff for deciding “listen”
vs. “skip,” which might not be optimal given strong class imbalances or certain business constraints.

2. Robust to Class Skew: ROC AUC considers the model’s True Positive Rate (TPR) and False
Positive Rate (FPR) for different thresholds, offering a more reliable comparison when positives are
relatively rare (or, in some datasets, especially frequent). While metrics like accuracy can be misleading
when 70–80% of instances fall into one class, ROC AUC gives us a clearer sense of how effectively I
separate listens from skips.

3. Competition Requirement: The DSG17 competition specifically states that the submissions are
ranked by ROC AUC, reinforcing our choice.

Using ROC AUC as the primary measure, I still supplement further analysis—such as PR/ROC curves,
threshold-dependent metrics, learning curves (Figures: 5–7 in the Appendix)-to better understand skip
detection at specific thresholds. This ensures both alignment with the competition goals and a strong
technical approach to imbalanced classification, which aligns with recent insights from studies [2].
To address this challenge, I explore multiple recommender approaches:

• Baseline Methods (Group 1):
– Content-Based Filtering
– Collaborative Filtering
– Matrix Factorization (including a Probabilistic Matrix Factorization variant)
– Restricted Boltzmann Machine (RBM)

• Advanced Methods (Group 2):
– Factorization Machines (FM)
– Neural Collaborative Filtering (NCF)
– Neural Matrix Factorization (NeuMF)
– GraphSAGE Recommender

I describe each step of the data pipeline—including EDA, feature engineering, model training, hyper-
parameter tuning, and final predictions—and then present results with a focus on ROC AUC plus other
performance measures (precision, recall, F1) where feasible.
Finally, I answer three key questions from the assignment:

1. How would I develop a recommendation algorithm to win this competition?
2. What do I propose to solve Deezer’s general recommendation problems?
3. Do the two solutions above overlap?

I conclude with a short reflection on our learning and technical insights.
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2. Data & Evaluation

2.1 Dataset Overview

The Kaggle-provided training data (train.csv) logs user-song interactions, each row showing whether a user
listened to a song (media_id) for over 30 seconds (is_listened=1) or skipped it (is_listened=0). The test data
(test.csv) contains users and tracks without the is_listened label, for which I must predict the probability
of listening.

Key fields include:

• user_id, media_id, artist_id, album_id: Identifiers for users, songs, artists, and albums.
• genre_id: The genre of each track.
• ts_listen: Unix timestamp for the listening event.
• platform_name, platform_family: The OS and device family used.
• release_date: Song release date (in YYYYMMDD format).
• user_age, user_gender: Demographics for users.
• listen_type, context_type: Whether a track was played via “Flow” or not, plus context (playlist,

album, etc.).
• media_duration: Duration of the song (in seconds).
• is_listened: Target = 1 if the user listened >30 s, 0 if skipped (training data only).

2.2 Data Splitting & Evaluation Protocol

I partition the fully labeled training data (from the supplemented train.csv) into roughly 70% for training,
15% for validation, and 15% for evaluation using our helper function. This split is essential because test.csv
lacks target values and is used only for final predictions. Our function supports several strategies: a global
(time-based) split, which orders data by ts_listen so that the earliest 70% is training, the next 15%
is validation, and the final 15% is evaluation; a user-level split that holds out each user’s last one or
two interactions; and a random split that shuffles data with a fixed seed. For baseline models, I used
the global split because it best captured temporal dynamics and yielded higher ROC AUC, whereas for
advanced models like NCF and NeuMF, a random split provided a slight boost by exposing the models to
a more diverse set of interactions. Having defined our splitting and evaluation setup, I next perform an
in-depth EDA and data cleaning in Section 3.1 to ensure consistent, high-quality input for our models.

3. Feature Engineering & Data Pipeline

In a real-world setting—especially with datasets of this size and complexity—a robust, modular data pipeline
is critical for building reliable recommendation systems. Our approach for feature engineering and data
preparation involved three main steps:

1. EDA & Basic Cleaning (notebook 1)
2. Preprocessing to Create a Unified “Feature Store” (notebook 2)
3. Model-Specific Transformations (notebook 3)

Below, I describe in detail how these steps interact, the rationale behind each decision, and how I leveraged
them to streamline model development.
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3.1 EDA & Basic Cleaning

Our initial exploratory analysis, documented in in notebook 1, confirmed that the dataset is robust. I found
no missing data—except for a few edge cases in release_date—and no duplicates, which simplified our
record-level checks. Given that most interactions occur post-2015, I filtered out older data to focus on more
recent user behavior.

I also identified right-skeId song durations (extreme outliers up to 65,535 seconds), leading us to cap
or remove improbable values. Furthermore, several categorical variables (such as genre_id, artist_id,
album_id) displayed long-tailed distributions, motivating dimension reduction or pruning of extremely
rare categories. The target variable is moderately imbalanced (~60% “listened” vs. ~40% “skipped”),
and diverse user interactions further highlight the complexity of this dataset.

Building on these observations, I engineered features to capture temporal and behavioral signals. I
derived time bins (hour, Iekday, weekend) from the UNIX timestamps and computed each track’s “age” by
subtracting its release_date from the ts_listen. I then introduced user behavior metrics—like skip
ratios, average listening duration, and a composite behavior index—to encapsulate individual preferences.
Additionally, I applied frequency thresholds to reduce sparsity in high-cardinality fields, and combined
certain features (e.g., media duration with user demographics) for more nuanced interactions. While time and
resource constraints limited the scope of the experiments, these enriched features form a flexible foundation
for subsequent modeling approaches, allowing us to continuously refine performance.

To finalize our cleaning strategy, I established several “soft” constraints: capping outlier song durations,
dropping rare categories, and restricting the dataset to valid, post-2015 observations. Collectively, these
steps balanced data quality against coverage, ensuring that the processed data was both comprehensive and
manageable for downstream model development.

3.2 Preprocessing & Unified Feature Store

Building on the EDA observations, I designed a robust, modular pipeline for feature engineering and
data preparation resulting in our unified feature store (details in notebook 2). This ensures consistency,
scalability, and reproducibility across models (see Figure: 3 in the Appendix) with the following steps:

1. Chunk-wise Data Loading
• For large CSVs (> 8 million rows), I used a chunk-based loader with dtype mappings (e.g., int8

for user_gender, int32 for media_id) to manage memory efficiently and merged them into one
DataFrame.

2. Filtering & Timestamps
• Timestamp (ts_listen) conversion to datetimes, dropping invalid entries.
• Based on EDA I excluded listens before 2015 and extracted time features (hour, Iekday,

is_weekend, day, week, month, year) to capture cyclical patterns.
3. Basic Cleaning

• Replaced rare genre_id or album_id with -1 and removed outliers in media_duration using an
IQR-based filter dropping extreme durations like 65k seconds.

4. Rare Category Pruning / Dimension Reduction
• Dropped low-frequency categories (e.g. genre_id, artist_id) using a fixed threshold (e.g. fre-

quency <50) or an auto-threshold at the 5% quantile.
5. Derived Time Features

• Created song_age_days (difference between ts_listen and release_date_parsed).
• Binned hours into broader categories (binTime), simplified weekdays into a weekend/weekday flag

(binwkd), and grouped release years (binRYear).
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6. Behavioral & Aggregation Features

• Computed track-level metrics like skip_score (skip ratio) and avg_song_listened (fraction
listened >30 seconds).

• Derived user aggregates (e.g., average songs per session, session length) and time-based popularity
(7d, 30d, 90d windows).

• Formulated a composite behavior_index to capture user–genre affinities.

7. User-Item Cross Features

• Combined features such as md_mf_group (merging media duration brackets with user gender) and
identified each user’s top genre (user_top_genre).

8. Final Output

• Saved a consolidated DataFrame (CSV/Parquet) with advanced features and summary stats for
consistent train–test merging.

As a result, I ended with a ~7.15M-row dataset containing 43 feature columns, providing a standardized
“feature store” for all recommender algorithms.

3.3 Model-Specific Transformations

Despite the unified feature store, certain methods—like Neural Collaborative Filtering (NCF) or
GraphSAGE—need extra steps (see : Figure: 4 in the Appendix and details in notebook 3):

• NCF/NeuMF: I remapped user/item IDs to contiguous integer indices (e.g., [0..num_users - 1])
to properly initialize embedding layers.

• GraphSAGE: I constructed a bipartite graph using positive interactions (is_listened=1) by offsetting
item IDs (i.e., item_id + num_users) and building an edge index, with negative sampling applied
during training.

• FM: Factorization Machines typically benefit from a sparse one-hot representation. I transformed
features into a csr_matrix before fitting fastFM [3].

By placing these transformations after I build the feature store, all advanced features remain available; I
simply pick or convert what each model needs.

3.4 Benefits of a Modular Pipeline

1. Consistency Across Models: Centralizing outlier handling, category pruning, and advanced feature
creation ensures each algorithm (baseline or advanced) uses the same core data.

2. Scalability: With well-defined steps, I can refresh or partially re-run time-based features for new
data, without rewriting the entire pipeline.

3. Debugging & Iteration: When anomalies appear—e.g., missing release_date—the pipeline’s logs
let us trace each step and fix issues quickly.

4. Reuse & Collaboration: Different teams can experiment with newly added features or try advanced
architectures without duplicating data cleaning work, boosting overall productivity.

Overall, a robust, modular pipeline dramatically accelerates experimentation and deployment cycles,
especially crucial for multi-million-row recommender systems. All subsequent models—whether baseline or
advanced—benefit from these consistent, well-engineered features.
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3.5 Hyperparameter Tuning

For baseline models, I used ParameterGrid (see Table 1) to tune parameters for content-based filtering,
collaborative filtering, matrix factorization, and PMF. For advanced models, I grid searched FM parameters,
used Keras Tuner’s RandomSearch with early stopping to optimize NCF and NeuMF (see Table 2), and
manually tuned GraphSAGE. The best configurations—selected based on validation ROC AUC—ensure
consistency and reproducibility for final evaluation and test predictions (see implementation in notebook 3).

4. Group 1: Baseline Recommenders

In the baseline phase, I explore methods that are well-known for their computational efficiency and inter-
pretability, using them as a comparative yardstick. These include Content-Based Filtering, Collaborative
Filtering, Matrix Factorization, Probabilistic Matrix Factorization (PMF), and a Restricted Boltzmann Ma-
chine (RBM). Each approach targets a different blend of item attributes and user–item interactions, providing
a comprehensive view of simpler yet foundational recommender strategies.

4.1 Content-Based Filtering

Content-based filtering focuses on item-level attributes such as genre, artist, album, and release date. I
encode these features, transform them into appropriate numeric or categorical representations, and then
train a logistic regression model to predict the probability that a user will listen to a recommended track
for more than 30 seconds. Building on the principles of content-driven music recommendation outlined
in Deldjoo et al. [4], this method is highly interpretable—allowing stakeholders to clearly see how each
item attribute influences the recommendation. However, it may overlook more subtle user–item interaction
patterns.
In our experiments, after tuning the logistic regression regularization parameter 𝐶, I achieved a validation
ROC AUC of about 0.5237. On the evaluation set, the final ROC AUC stood at 0.5274. Although
this demonstrates that content-based signals are not entirely negligible, it underscores that user behavior
and collaborative insights are likely more influential for better ROC AUC.

4.2 Collaborative Filtering

Collaborative filtering leverages user–item interaction histories [5]. I include features such as
avg_song_listened (average listen rate for the item) and skip_score (fraction of times a track is
skipped) alongside (user_id, media_id) pairs, then train another logistic regression. Collaborative
filtering shines in settings with abundant user feedback, as it directly encodes collective behavior patterns.
Tuning the same logistic regression hyperparameter 𝐶 resulted in a validation ROC AUC around 0.5366,
yielding an evaluation ROC AUC of approximately 0.5383. This surpasses content-based filtering by
a reasonable margin, demonstrating the advantage gained by using aggregated user–item interaction signals.

4.3 Matrix Factorization

Matrix factorization transforms user–item interaction data into latent factors that capture underlying di-
mensions of preference. I incorporate contextual features (e.g., context_type, binTime) into the matrix,
apply truncated SVD to reduce dimensionality, and then feed the latent factors into a logistic regression
classifier. This hybrid approach can uncover non-trivial structures in user behavior while remaining relatively
lightweight.
Our best matrix factorization model matched collaborative filtering in performance, with a validation ROC
AUC of 0.5366 and an identical evaluation ROC AUC of 0.5383. The near tie suggests that either
method captures similar structural signals in the user–item matrix when combined with basic context, which
is consistent with findings in [6].
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4.4 Probabilistic Matrix Factorization (PMF)

PMF focuses on minimal user–item features—just (user_id, media_id) plus the binary target—and learns
latent factors along with per-user and per-item biases via gradient descent. Our implementation, inspired in
part by the approach in [7], adapts this framework for binary outcomes by incorporating a stable sigmoid
function and explicit bias updates. Nevertheless, our best PMF model (tuned over factor dimensions, learning
rate, and regularization) yielded an evaluation ROC AUC around 0.4850, which fell below the other
baselines. This indicates that purely factorizing user–item interactions, without contextual or item-level
data, underperforms in our skip prediction scenario.

4.5 Restricted Boltzmann Machine (RBM)

An RBM can learn hidden binary representations from content-based features (e.g., genre_id, artist_id,
album_id, and derived “song age”). I then feed these latent representations into a logistic regression layer
for final classification. Although RBMs have been extensively used for modeling user ratings in collaborative
filtering tasks (see, Salakhutdinov et al. [8]), in our pipeline I adapt the approach to extract latent features
from item content. Our tuned RBM-based pipeline achieved a validation ROC AUC of 0.5174 and an
evaluation ROC AUC of 0.5187—better than PMF, but still below collaborative filtering and matrix
factorization.

4.6 Summary of Baseline Models

The following Table 1 summarizes the ROC AUC metrics and best hyperparameters for each baseline
recommender. Collaborative Filtering and Matrix Factorization both produce the highest ROC AUC
scores arround 0.5383 on our evaluation set, highlighting the gains from user interaction data and/or
latent factor embeddings, while PMF (0.4850) falls below random basline ROC AUC (0.5) and RBM remain
below 0.52 in final performance.

Table 1: Performance of Baseline Models

Model ValAUC EvalAUC BestHyperparameters
Content-Based Recommender 0.5237 0.5274 C=1 (Logistic Regression)
Collaborative Filtering Recommender 0.5366 0.5383 C=0.1 (Logistic Regression)
Matrix Factorization Recommender 0.5366 0.5383 n_components=6 (Truncated SVD + LR)
PMF Recommender 0.4850 0.4850 n_factors=10, lr=0.01, reg=0.01

(PMF)
RBM Recommender 0.5174 0.5187 n_components=100 (RBM + LR)

Overall, these baseline results illustrate the relative strengths and limitations of simpler methods. Content-
based approaches provide a basic signal but struggle to incorporate user-specific behavior. Pure user–item
factorization is not sufficiently rich for skip prediction, and adding item-level or contextual signals (as in
collaborative filtering and matrix factorization) boosts predictive power to around 0.5383 ROC AUC. This
sets a benchmark for more advanced techniques in the next section.

5. Group 2: Advanced Recommenders

Moving beyond the baseline models, I seek to exploit an expanded feature set—including time-based, contex-
tual, and user behavior variables—and to employ deeper architectures capable of learning complex interaction
patterns. The four advanced methods tested are: Factorization Machines (FM), Neural Collaborative Fil-
tering (NCF), Neural Matrix Factorization (NeuMF), and a GraphSAGE-based approach. Each integrates
additional nuance, from pairwise feature interactions (FM) to graph-based embeddings (GraphSAGE). In the
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following sections, I use ROC AUC on the evaluation set as our primary metric, since all models were op-
timized for this threshold‑independent measure. In the Appendix, you’ll find additional threshold‑dependent
metrics—precision, recall, F1, and accuracy (at a 0.5 threshold) with confusion matrices—for a more
detailed view on the best performing models (NCF, NeuMF, GraphSAGE). I also include PR and ROC
AUC curves to illustrate model behavior across thresholds, as well as a “loss over epochs” plot to show
training convergence and potential overfitting. I also discuss factors like model complexity and training time
(exact timings are unavailable since I realized too late that I omitted %%time).

5.1 Factorization Machines (FM)

Factorization Machines generalize linear models by representing features in a latent dimension and modeling
pairwise interactions. I feed a large variety of features—identifiers (user, item, artist, album), time bins, user
aggregates (like behavior index), and so on—into an FM classifier from fastFM [3]. Despite capturing many
interactions automatically, the best FM configuration underperforms relative to other advanced models,
finishing with a ~0.58 ROC AUC on the evaluation set. That result highlights both the potential
complexity of hyperparameter tuning for FMs and the value of specialized neural or graph-based approaches.

5.2 Neural Collaborative Filtering (NCF)

NCF uses embedding layers for both users and items, which are then concatenated and passed through a
feed-forward neural network [9]. By tuning hyperparameters (e.g., embedding size, dropout rate) with Keras
Tuner, I obtain a configuration that achieves an evaluation ROC AUC of ~0.79. The improvement shows
that neural embeddings can capture user–item relationships more effectively than linear or purely factorized
approaches, especially when sufficient data is available.
In the Appendix, Figure: 5 presents additional metrics—including precision, recall, F1, confusion matrix,
PR/ROC curves, as well as ROC AUC and training and validation loss curves. Our training and valida-
tion loss drop rapidly in the first two epochs and plateau around epoch 3, indicating limited benefit from
further training and notably good generalization. NCF’s parameter count lies between FM (fewer) and
NeuMF (more), and on a GPU (e.g., NVIDIA T4), training roughly 7 million interactions runs faster than
GraphSAGE and is comparable to NeuMF.

5.3 Neural Matrix Factorization (NeuMF)

NeuMF builds on NCF by merging a Generalized Matrix Factorization (GMF) branch with an MLP branch
[9]. The GMF branch models linear interactions (via element-wise multiplication of user and item embed-
dings), while the MLP branch captures non-linear relationships by concatenating embeddings and passing
them through multiple dense layers. Our best NeuMF model yields an evaluation ROC AUC of ~0.80.
Compared to standard NCF, this approach can exploit both linear and complex interactions, pushing per-
formance slightly higher.
As shown in Figure: 6 in the Appendix, the training loss (blue) decreases from ~0.51 to ~0.44 over 3 epochs,
while the validation loss (orange) dips from ~0.50 to ~0.49 then rises slightly, suggesting overfitting. Despite
its dual-branch architecture (GMF + MLP) and higher parameter count compared to NCF, NeuMF still
trains noticeably faster than GraphSAGE.

5.4 GraphSAGE Recommender

GraphSAGE, introduced by Hamilton et al. [10] and further advanced in scalable frameworks such as
PyTorch Geometric [11] reframes the problem as embedding nodes in a bipartite user–item graph. Each
positive interaction becomes an undirected edge, and I apply SAGEConv layers to iteratively aggregate
neighbor information. Negative sampling complements training, distinguishing true edges from random
user–item pairs.
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As shown in Figure: 7 in the Appendix, the training loss (blue) decreases from ~0.95 to ~0.84 over nine
epochs, while the validation loss (orange) moves from ~0.98 to ~0.96 and plateaus around epoch 7. This gap
indicates steady learning yet suggests overfitting after epoch 7.
GraphSAGE emerges as the top-performing model in terms of ROC AUC of ~0.82 on the evaluation
set. This suggests that graph-based approaches can excel where user–item connectivity patterns are central,
as adjacency relationships offer a structured way to capture user and item neighborhoods. This aligns with
recent surveys on GNN-based recommender systems, which note that leveraging adjacency relationships
boosts performance and scalability on large-scale graphs [12]. However, due to neighbor sampling at each
training step, GraphSAGE typically takes longer to train than NCF or NeuMF when operating on millions
of interactions.

5.5 Summary of Advanced Models

All four advanced models leverage richer (time-based, contextual, and behavioral) features and deeper archi-
tectures, surpassing the baseline ROC AUC of 0.5 for random guessing. Factorization Machines (FM)
reach ~0.58 and can be preferable with moderate data or strict interpretability needs. Neural Collabora-
tive Filtering (NCF) scores ~0.79, balancing complexity and speed, while Neural Matrix Factorization
(NeuMF) improves to ~0.80 at the cost of overfitting. GraphSAGE leads with ~0.82, making it ideal when
capturing user–item connectivity is central, albeit with a heavier training load due to neighbor sampling.
Table 2 presents each model’s validation/evaluation ROC AUC and best hyperparameters.

Table 2: Performance of Advanced Models

Model ValAUC EvalAUC BestHyperparameters
FM ~0.63 ~0.58 rank=30, n_iter=150, l2_reg_w=0.1, l2_reg_V=0.01
NCF ~0.79 ~0.79 embedding_dim=16, fc_units=32, dropout_rate=0.4
NeuMF ~0.80 ~0.80 gmf_embedding_dim=16, mlp_embedding_dim=24, num_mlp_layers=1,

dropout_rate=0.2
GraphSAGE~0.89 ~0.82 embedding_dim=64, num_layers=2

All three deep learning or graph-based methods offer significant gains over the best baseline approaches.
While FM does not appear competitive under our current hyperparameter search, it may improve with a
more extensive tuning protocol. In practice, I also see that deeper or graph-oriented models typically require
more computational resources and careful sampling strategies. Nevertheless, their ability to fuse multiple
feature types—including user behaviors, item properties, and temporal context—makes them especially
relevant for large-scale music recommendation scenarios.

6. Key Questions & Discussion

6.1 How would you develop a recommendation algorithm to win this competition?

To maximize ROC AUC in a short‐term, competition‐focused setting, I would rely on a two-pronged strat-
egy: feature richness and ensemble methods. First, I build a wide variety of contextual and behavioral
features, including real‐time popularity windows, skip ratios, user–genre affinity scores, and session‐based
signals. Second, I train several high-performing single models—like GraphSAGE, NeuMF, and a tuned
Collaborative Filtering pipeline—and blend their outputs using either a meta‐learner (e.g., a small
logistic regression on their predicted scores) [13] or a weighted average scheme. This ensemble typically
outperforms any single architecture by exploiting each model’s unique strengths [14]. I would further refine
hyperparameters (embedding sizes, learning rates, negative sampling strategies) with automated search tools
such as Keras Tuner. Because the challenge emphasizes ROC AUC for a static test set, I need not worry
as much about real‐time latency; instead, I focus on carefully engineered features, robust ensembles, and
extensive cross‐validation to push ROC AUC to the limit.
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6.2 What do you propose to solve Deezer’s general recommendation problems?

For Deezer’s long‐term, production‐scale needs, I propose a modular pipeline capable of handling
massive volumes of streaming data and evolving user tastes in near real time. Key components would
include:

1. Scalable Data Ingestion & Processing:
Implement an incremental or streaming approach to update user–item interactions daily (or even
hourly), re‐computing time‐based popularity metrics and partial user embeddings without rerunning
the entire pipeline.

2. Contextual & Session‐Aware Methods:
Incorporate session‐based neural models (e.g., RNNs or Transformers) to handle short session contexts
and dynamic skipping behavior. This ensures up‐to‐date, context‐sensitive recommendations rather
than purely historical patterns.

3. Hybrid Architectures & Diversity Control:
Combine collaborative signals with content features (genre, artist, or album attributes). Enforce track
diversity in recommendations so that users discover new music and avoid “echo chamber” effects.

4. Feedback Loop & Online Learning:
Continuously gather skip signals, partial plays, and user “likes.” Integrate these into an online learning
framework, ensuring that the system swiftly reacts to user drift or new content launches.

5. Interpretability & Personalization:
Provide user‐friendly explanations, e.g., “Recommended because you like [Artist X] and enjoy short
tracks on weekday mornings.” This builds trust, acceptance, and deeper engagement with Deezer’s
platform.

6.3 Do the two solutions overlap?

Yes—there is a significant overlap in foundational techniques. Both a Kaggle-style approach and a long‐term
Deezer production pipeline rely on robust feature engineering, factorization or embedding‐based models, and
consistent hyperparameter tuning. However, as Figure: 2 illustrates, they differ in scope and emphasis:

Figure 2: Comparison of Kaggle Competition and Real-World Production Needs
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Competition:

• Targets a single static submission and short‐term performance (ROC AUC).
• Emphasizes heavy offline tuning and like in our case large ensembles without strict inference latency

or memory constraints.
• Less concerned with real‐time updates or interpretability.

Real‐World Production:

• Requires scalability, maintainability, and interpretability to handle tens of millions of daily
interactions.

• Incorporates continuous feedback loops and dynamic updates for new tracks or user changes.
• Demands explainable results, robust failover, and compliance with computational budgets and la-

tency SLAs (Service-Level Agreements).

Thus, while the core modeling ideas are similar—extract user–item embeddings, tune models, handle skip
signals—the operational and product requirements for Deezer’s real business environment introduce
additional layers: real-time streaming ingestion, interpretability needs, and continuous retraining constraints.

7. Conclusion

I developed a Deezer recommender system capable of predicting whether users will listen to newly recom-
mended music tracks for over 30 seconds. Our baseline approaches (Content‐Based, Collaborative Filter-
ing, and Matrix Factorization) achieved ROC AUC of about 0.52–0.54, while more specialized methods
like Probabilistic MF and RBM fared slightly worse in our data setting. By expanding to advanced
models—notably Neural Collaborative Filtering (NCF), NeuMF, and GraphSAGE—I obtained
substantially higher ROC AUC values, peaking at around 0.79–0.82 on our final evaluation split.

Key Takeaways:

1. Advanced Feature Engineering: Incorporating time‐based popularity, user–genre behavior indices,
and skip scores enhances model accuracy considerably.

2. Deeper Architectures: Neural methods and graph‐based approaches can learn nuanced patterns,
outperforming traditional baselines when sufficient data and computational resources are available.

3. End‐to‐End Pipelines: A clean, modular pipeline for data ingestion, outlier removal, feature con-
struction, and final model training is essential—especially at the ~7M–row scale.

4. Future Outlook: For Deezer’s live environment, I recommend a hybrid approach that continuously
updates embeddings for new songs and integrates user session signals (e.g., sequence modeling) to
handle skipping behavior in real time.

Overall, our results highlight that combining robust feature engineering with state‐of‐the‐art modeling—like
GraphSAGE or deep embedding methods—unlocks strong predictive performance for music skip prediction.
Deezer can build on these insights, layering real‐time data, interpretability modules, and user‐centric design
to maintain a market‐leading recommendation engine.
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Appendix

A. Colab Notebooks

• Notebook 1: EDA.ipynb
• Notebook 2: Preprocess_Feature_store.ipynb
• Notebook 3: Specific_Preprocess_and_Modelling

B. Figures

• Figure 1: Graph
• Figure 2: Comparison of Kaggle Competition and Real-World Production Needs
• Figure 3: Pipeline
• Figure 4: Modelling Pipline
• Figure 5: Model Evaluation Metrics for NCF
• Figure 6: Model Evaluation Metrics for NeuMF
• Figure 7: Model Evaluation Metrics for GraphSAGE

C. Self-Reflection

Over the course of this recommender systems project, I have significantly expanded my understanding of:

• Scientific Knowledge
– Collaborative vs. Content Approaches: I experienced how item similarity alone (content-based)

can be outperformed by user–item interaction signals (collaborative).
– Matrix Factorization: Hands-on with classical MF approaches showed the importance of factor-

based user–item representations. I also learned about their limitations (e.g., cold start, negative
sampling).

– Advanced Deep Learning: Neural Collaborative Filtering (NCF), NeuMF, and GraphSAGE
highlighted the power of deep networks—particularly in capturing non-linear interactions
and adjacency-based patterns. I saw how performance can spike with dedicated architecture
searching.

– Graph Methods: Representing recommendations as a bipartite graph allowed us to leverage Graph-
SAGE for user–item node embeddings, offering high accuracy.

• Technical Skills
– Data Pipelines: Building a robust, modular pipeline that can handle large data, from EDA to

final merges with advanced features.
– Software Stacks: Familiarity with frameworks such as fastFM, PyTorch Geometric, and Keras

Tuner for hyperparameter searching.
– Performance Tuning: Realizing that random splits vs. time-based splits can drastically affect

measured ROC AUC. I also tested various negative-sampling strategies and discovered how crucial
sampling is to final model performance.

• Key Takeaways & Next Steps
– Complex models benefit from large, well-engineered feature spaces—but I must watch for overfit-

ting.
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– Practical constraints (hardware, memory) limit hyperparameter searches; a systematic approach
or Bayesian optimization might further improve results.

– Explaining recommendations to end users is a growing area. Black-box neural methods demand
interpretability solutions.

• Feedback & Personal Growth

– I valued the chance to experiment with a real dataset, bridging theory from class with practical
Kaggle-style competition tasks.

– Deep recommender systems (NCF, NeuMF) were new territory for us but provided an excellent
demonstration of how advanced methods often outperform simpler heuristics—yet require greater
computational resources and thoughtful hyperparameter tuning.

– The final step of building a pipeline that merges training stats (like skip ratios) into the test data
gave us a sense of how real industry pipelines might function (though scaled up with stream-
processing or near real-time computations).

In summary, the project honed my recommender system knowledge and taught us hands-on engineering skills
in data preprocessing, feature store creation, advanced model training, and large-scale system design.
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D. Additional Plots or Tables

Figure 3: Pipeline
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Figure 4: Modelling Pipline

Figure 5: Model Evaluation Metrics for NCF
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Figure 6: Model Evaluation Metrics for NeuMF

Figure 7: Model Evaluation Metrics for GraphSAGE
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